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ABSTRACT 

The identification of changes in observational data relating to human induced climate change 
remains a topic of paramount importance. In particular, scientifically sound and rigorous 
methods for detecting changes are urgently needed. Here we will develop a Bayesian 
procedure in phenological study using non-informative prior under constant time series 
model. 
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INTRODUCTION 

The global average surface temperature has increased over the twentieth century by about 
0.6±0.2℃ and is projected to continue to rise at a rapid rate. Many studies have been done of 
ecological impacts of this recent climate change. Penology is perhaps the simplest and most 
frequently used bio-indicator to track climate changes. 

Bayesian statistical methods have been applied so far in climate change detection, analysis 
and attribution (e.g. Hobbs,1997; Hasselman, 1998; Leroy, 1998; Tol and De Vos, 1998; 
Barnett, 1999; Katz, 2002 and V. Dose and A.Menzel,2004). 

In this paper we will focus to develop a probability model by using Bayesian concept in 
phenological study under time series model. Here we will use non-informative prior to 
develop the model. In the next section, we shortly introduced the Bayesian concepts. 

Bayesian Procedure: Here we will introduce the Bayesian procedure and terminology which 
is necessary to develop the probability model for phonological studies. Bayesian probability 
theory is based on the application of two rules. The first is the conventional product rule for 
manipulating conditional probabilities .  It allows a probability density function to be broken 

down depending on two (or more ) variables 





 →→

IMdP ,/,θ   conditional on the model M that 

specifies the meaning of the parameter 
→

θ  and additional information I into simplified form 
as, 
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Where P(θ�⃗ /M, I)  and P(θ�⃗ ,d�⃗ /M,I)  depends only on the single (vector)-variables  θ�⃗   andd�⃗  
respectively. 
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Equation (1) may be expanded in an alternative way due to symmetry in the variableθ�⃗  ,d�⃗  – 
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
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
=






 →→→→→

IMdPIMdPIMdP ,,/*,/,,/, θθ                                            (2)                                  

Equating the right hand sides of equation (1) and (2), we find Bayes, theorem. that is,  

P(θ�⃗ /d�⃗ , M )    =P(θ��⃗ /M,I)∗ P(d��⃗  /θ��⃗ ,M,I)
P(θ��⃗ /M,I)

   (3)  

The function on the left hand side is called the posterior density of the parameters θ�⃗   given 
data d�⃗  and model M. It is equal to the prior density of the parametersθ�⃗ , P(θ�⃗  /M, I) which 
encodes our information on  θ,��⃗   prior to considering the data d�⃗  times the likelihood. 

P(d�⃗ /M, I)is formly the normalisation for the posterior density,  

         P(d�⃗ /M, I) = ∫dθ�⃗ P(θ�⃗ /M, I) *P(d�⃗  /θ�⃗ , M, I)  (4) 

By inverse application of the product rule we arrive at the Bayesian marginalisation rule, 
which completes Bayes theory and has no counterpart in traditional statistics, 

P(d�⃗ /M, I) = ∫ dθ�⃗ P(θ�⃗ /M, I)*P(d�⃗  /θ�⃗ , M, I)  (5)  

Equation (5) allows for us an important interpretation. It is obviously the likelihood of the 
data d�⃗  given the model M regardless of the numerical values of the parameter  θ�⃗  . Employing 
Bayes theorem to invert (5) we obtain- 

P(d�⃗ /M, I) = ∫dθ�⃗ P(d�⃗ ,θ�⃗ /M, I)   (6) 

Equation (6) is then the probability of a model M out of a possible variety given the data   d�⃗ . 

  Having identified the appropriate model to explain the data we are left with the 
determination of the parameters, which specify the model. The full information on the 
parameters, is of course contained in the posterior distribution (3).It is sufficiently simple 
meaning that P(θ/D, I) resembles a Gaussian function, then it may be summarized in terms of 
mean and variance,  

〈θ〉 = ∫ θP(θ/D, I)dθ� 
〈∆θ2〉 = ʃ(θ − 〈θ〉)2P(θ/D, I)dθ   (7) 

This completes a Bayesian analysis if the problem is model selection and best estimate of the 
parameters specify the model. 

Model:  The likelihood function for this model must incorporate the data𝑑, the years 𝑥⃗, the 
scatter of the data will be characterized by a variable 𝜎 and the constant 𝑓 that we choose to 
define the ‘no trend’ on the data. 

The model becomes, 
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𝑑𝑖 − 𝑓𝑖 =∈𝑖    ∀𝑖   (8) 

Where ∈𝑖 is i.i.d. and follow normal distribution with mean zero and variance 𝜎2 . Hence 

P (𝑑/𝑥⃗,𝜎,I)  =     � 1
𝜎√2𝜋

� N exp  �− 1
2𝜎2

∑ (𝑑𝑖 − 𝑓)2𝑁
𝑖=1 �  (9) 

From the equation (9), we must now calculate the evidence P (𝑑/𝑥⃗,𝑐,I), where C denotes that 
the constant model. From the marginalization theorem,(4):        

P (𝑑/𝑥⃗,𝑐,I) =     ʃ P(𝑑,f,𝜎/𝑥⃗,𝑐,I) df d𝜎 (10) 

                     =ʃ  P(f,𝜎/𝑥⃗, 𝑐, I)   P(𝑑/𝑥⃗, f, σ, 𝑐, I) df d𝜎 (11) 

The first distribution under the integral in(11) is logically independent of  𝑥⃗and c simplifies 
to, 

P(f,𝜎/𝐼) = P(𝜎/𝐼)  (12)                                                                                                       

The prior distribution P(f/I) on f is chosen(weekly informative) to be constant over the range 
2𝛾, 

P(f/I) =    1
2𝛾

(13) 

The range 𝛾can be estimated from the variance of the data. 

Similar choice is made for P(𝜎/𝐼).  We choose a normalised form of Jeffrey’s prior: 

P(𝜎/𝛽 , 𝐼 ) =   1
2 ln𝛽

1
𝜎
                               ; 1

𝛽
<𝜎 < 𝛽(14) 

This leads to the marginal likelihood from equation (11), 

P (𝑑/𝑥⃗,𝑐,I) =     � 1
2𝜋
� N/2 1

2𝛾
1

2 ln 𝛽
ʃ d𝜎
𝜎

1
𝜎𝑁

exp  �− 1
2𝜎2

∑ (𝑑𝑖 − 𝑓)2𝑁
𝑖=1 � df 

Now, ∑ (𝑑𝑖 − 𝑓)2𝑁
𝑖=1 =   ∑ (𝑑𝑖 − 𝑑̅ + 𝑑̅ − 𝑓)2𝑁

𝑖=1  

                                        = N (f−𝑑̅ )2  +  N∆𝑑����2 

Where,       𝑑̅= 1
𝑁
∑ 𝑑𝑁
𝑖=1 i    and     ∆𝑑����2   =  1

𝑁
∑ (𝑑𝑛
𝑖=1 i−𝑑̅ )2. 

Therefore, 

P (𝑑/𝑥⃗,𝑐,I) =� 1
2𝜋
� N/2 1

2𝛾
1

2 ln𝛽
ʃ 1
𝜎

1
𝜎𝑁

 exp�−𝑁∆𝑑
����2

2𝜎2
� 𝑑𝜎 ∫ 𝑒𝑥𝑝 � 𝑁

2𝜎2
(𝑓 − 𝑑̅)2�∞

−∞ df (15) 

Now  ∫ 𝑒𝑥𝑝 �− 𝑁
2𝜎2

(𝑓 − 𝑑̅)2�∞
−∞  df =  𝜎�2𝜋

𝑁
 

Hence, equation (15) can be written as,  
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P (𝑑/𝑥⃗,𝑐,I) = �2𝜋
𝑁
� 1
2𝜋
�N/2 1

2𝛾
1

2𝑙𝑛𝛽 ∫
1
𝜎

∞
0

1
𝜎𝑁−1

 exp�−𝑁∆𝑑
����2

2𝜎2
� d𝜎. 

Now by taking substitution x = 1
𝜎2

 ,we find                                                                                                     

∫ 1
𝜎

∞
0

1
𝜎𝑁−1

exp�−𝑁∆𝑑
����2

2𝜎2
� d𝜎 = 1

2

𝛤𝑁−12

(𝑁∆𝑑����2)
𝑁−1
2

   (16) 

Collecting terms the evidence for the constant model becomes, 

P (𝑑/𝑥⃗,𝑐,I) =  1
2
�1
𝜋
�
𝑁−1
2 1 

2𝛾
1

2 𝑙𝑛𝛽

𝛤𝑁−12

(𝑁∆𝑑����2)
𝑁−1
2

1
√𝑁

 (17) 

The residual sum of square of the model (17) is given by the expression, 

R = N∆𝑑����2 

Where     ∆𝑑����2 =  1
𝑁
∑ �𝑑𝑖 − 𝑑̅�

2𝑁
𝑖=1  

                        =  1
𝑁
∑ 𝑑𝑖

2𝑁
𝑖=1 − 𝑑̅2 

For an illustration, we have the mean temperature data of Faizabad district     in ℃  from the 
year 1990-1991 to 1999-2000 in which, 

                           ∑ d = 254.55 

𝑑̅  = 25.45 

𝑑̅2 = 647.98 

                          ∑ 𝑑𝑖
2 = 6484.96 

∆𝑑����2  = 1
𝑁
∑ 𝑑𝑖

2𝑁
𝑖=1 − 𝑑̅2 

  = 648.96 – 647.98 

 = 0.5 16 

Therefore, 

Residual sum of the model (17) is 

   R = N∆𝑑����2 

     = 10* 0.516 

     = 5.16 
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CONCLUSION  

From the above discussion we can say that, by using the model (17) we can describe the Time 
Series Data and assessment of their functional behaviour. We can measure the rates of change 
with uncertainty margins as well as evolution of independent treatment of Time Series 
triggering parameters and affected systems. 
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